悟空视频

    在线播放云盘网盘BT下载影视图书

    Spark MLlib机器学习: 算法、源码及实战详解 - 图书

    导演:黄美灵
    《Spark MLlib机器学习:算法、源码及实战详解》以Spark 1.4.1版本源码为切入点,全面并且深入地解析Spark MLlib模块,着力于探索分布式机器学习的底层实现。 《Spark MLlib机器学习:算法、源码及实战详解》中本着循序渐进的原则,首先解析MLlib的底层实现基础:数据操作及矩阵向量计算操作,该部分是MLlib实现的基础;接着对各个机器学习算法的理论知识进行讲解,并且解析机器学习算法如何在MLlib中实现分布式计算;然后对MLlib源码进行详细的讲解;最后进行MLlib实例的讲解。相信通过《Spark MLlib机器学习:算法、源码及实战详解》的学习,读者可全面掌握Spark MLlib机器学习,能够进行MLlib实战、MLlib定制开发等。 《Spark MLlib机器学习:算法、源码及实战详解》适合大数据、Spark、...(展开全部)
    Spark MLlib机器学习: 算法、源码及实战详解
    图书

    Spark机器学习进阶实战 - 图书

    2018计算机·人工智能
    导演:马海平
    本书一共分三大部分:基础篇(1-2章)对Spark机器学习进行概述、并通过Spark机器学习开始进行数据分析;算法篇(3-8章)针对分类、聚类、回归、协同过滤、关联规则、降维等算法进行详细讲解,并进行案例支持;综合案例篇(9-12章)重点通过异常检测、用户画像、广告点击率预估、智慧交通大数据4个综合场景,详细讲解基于Spark机器学习的综合应用。
    Spark机器学习进阶实战
    搜索《Spark机器学习进阶实战》
    图书

    Spark机器学习进阶实战 - 图书

    2018计算机·人工智能
    导演:马海平
    本书一共分三大部分:基础篇(1-2章)对Spark机器学习进行概述、并通过Spark机器学习开始进行数据分析;算法篇(3-8章)针对分类、聚类、回归、协同过滤、关联规则、降维等算法进行详细讲解,并进行案例支持;综合案例篇(9-12章)重点通过异常检测、用户画像、广告点击率预估、智慧交通大数据4个综合场景,详细讲解基于Spark机器学习的综合应用。
    Spark机器学习进阶实战
    搜索《Spark机器学习进阶实战》
    图书

    Spark机器学习 - 图书

    导演:彭特里思
    本书每章都设计了案例研究,以机器学习算法为主线,结合实例探讨了Spark 的实际应用。书中没有让人抓狂的数据公式,而是从准备和正确认识数据开始讲起,全面涵盖了推荐系统、回归、聚类、降维等经典的机器学习算法及其实际应用。
    Spark机器学习
    搜索《Spark机器学习》
    图书

    Spark机器学习 - 图书

    导演:彭特里思
    本书每章都设计了案例研究,以机器学习算法为主线,结合实例探讨了Spark 的实际应用。书中没有让人抓狂的数据公式,而是从准备和正确认识数据开始讲起,全面涵盖了推荐系统、回归、聚类、降维等经典的机器学习算法及其实际应用。
    Spark机器学习
    搜索《Spark机器学习》
    图书

    机器学习算法竞赛实战 - 图书

    2021计算机·人工智能
    导演:王贺 刘鹏 钱乾
    本书是算法竞赛领域一本系统介绍竞赛的图书,书中不仅包含竞赛的基本理论知识,还结合多个方向和案例详细阐述了竞赛中的上分思路和技巧。全书分为五部分:第一部分以算法竞赛的通用流程为主,介绍竞赛中各个部分的核心内容和具体工作;第二部分介绍了用户画像相关的问题;第三部分以时间序列预测问题为主,先讲述这类问题的常见解题思路和技巧,然后分析天池平台的全球城市计算AI挑战赛和Kaggle平台的Corporación Favorita Grocery Sales Forecasting;第四部分主要介绍计算广告的核心技术和业务,包括广告召回、广告排序和广告竞价,其中两个实战案例是2018腾讯广告算法大赛:相似人群拓展和Kaggle平台的TalkingData Ad Tracking Fraud Detection Challenge;第五部分基于自然语言处理相关的内容进行讲解,其中实战案例是Kaggle平台上的竞赛Quora Question Pairs。本书适合从事机器学习、数据挖掘和人工智能相关算法岗位的人阅读。
    机器学习算法竞赛实战
    搜索《机器学习算法竞赛实战》
    图书

    机器学习算法评估实战 - 图书

    2021计算机·人工智能
    导演:宋亚统
    机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。 本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9章~第11章,总结算法评估的常用工具、技术及方法论,包括实用的可视化工具介绍,并讨论机器学习算法的本质。本书适合机器学习专业相关从业者和算法工程师阅读,也适合想要从事人工智能和机器学习工作的人士学习和参考。
    机器学习算法评估实战
    搜索《机器学习算法评估实战》
    图书

    机器学习算法竞赛实战 - 图书

    2021计算机·人工智能
    导演:王贺 刘鹏 钱乾
    本书是算法竞赛领域一本系统介绍竞赛的图书,书中不仅包含竞赛的基本理论知识,还结合多个方向和案例详细阐述了竞赛中的上分思路和技巧。全书分为五部分:第一部分以算法竞赛的通用流程为主,介绍竞赛中各个部分的核心内容和具体工作;第二部分介绍了用户画像相关的问题;第三部分以时间序列预测问题为主,先讲述这类问题的常见解题思路和技巧,然后分析天池平台的全球城市计算AI挑战赛和Kaggle平台的Corporación Favorita Grocery Sales Forecasting;第四部分主要介绍计算广告的核心技术和业务,包括广告召回、广告排序和广告竞价,其中两个实战案例是2018腾讯广告算法大赛:相似人群拓展和Kaggle平台的TalkingData Ad Tracking Fraud Detection Challenge;第五部分基于自然语言处理相关的内容进行讲解,其中实战案例是Kaggle平台上的竞赛Quora Question Pairs。本书适合从事机器学习、数据挖掘和人工智能相关算法岗位的人阅读。
    机器学习算法竞赛实战
    搜索《机器学习算法竞赛实战》
    图书

    机器学习算法评估实战 - 图书

    2021计算机·人工智能
    导演:宋亚统
    机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。 本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9章~第11章,总结算法评估的常用工具、技术及方法论,包括实用的可视化工具介绍,并讨论机器学习算法的本质。本书适合机器学习专业相关从业者和算法工程师阅读,也适合想要从事人工智能和机器学习工作的人士学习和参考。
    机器学习算法评估实战
    搜索《机器学习算法评估实战》
    图书

    机器学习算法 - 图书

    2020科学技术·工业技术
    导演:朱塞佩·博纳科尔索
    本书介绍了数据科学领域常用的所有重要机器学习算法以及TensorFlow和特征工程等相关内容。涵盖的算法包括线性回归、逻辑回归、支持向量机、朴素贝叶斯、k均值、随机森林等,这些算法可以用于监督学习、非监督学习、强化学习或半监督学习。 在本书中,你将学会如何使用这些算法来解决所遇到的问题,并了解这些算法的工作方式。本书还将介绍自然语言处理和推荐系统,这些内容将帮助大家进行多种算法的实践。
    机器学习算法
    搜索《机器学习算法》
    图书
    加载中...